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NATURAL LAWS AND DEFINITIONS

An Enquiry into Conventionalism in Relation to the Foundations of Classical
Mechanics

The nature of the variously described laws, theories and axioms of
classical mechanics cannot be clearly understood without first considering
briefly what the role of such statements is in the scientific enterprise.
Taking the aims of science to be the explanation and description of the
observable world, its method is that of subsuming vast bodies of facts
under a few general laws, extracting or imposing order where there was dis-
order, explaining changing appearances in terms of known relations between
fixed entities. But change, to be explained, must first be measured, and
on different scales the measure will be different. Or if one constructs
different entities to save the appearances, then different relations will
be seen to obtain between them,

A scientific explanation then typically consists of statements of
fact about defined entities. It is not, however, always possible to decide
which of all the statements that can be made about an entity define it and
which describe it, Suppose, for instance, that an entity C may be clearly
discriminated by the properties Pl, Py=mu- Phit. . The possession of these
properties then defines this entity. But a definition, of itself, con-
veys no factual information. For C, so defined, to fulfil its role in
scientific explanation, one needs to show that it corresponds to an
existent and useful entity having some further properties,

Prrgs Preg ==
Pn'l One may now say of C that it has in fact the properties P, Py ===

1. That is to say, in science at least, one accepts John Stuart Mill's
assertion "that every definition contains an axiom, because by de-
fining we implicitly affirm the existence of the object defined" -
cited, Poincare, "Science and Hypothesis", Dover (1952), p. 44,
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Pn, where Pl--— Pk served originally to define C, and Pk+1 -- P, to describe
it. But it is quite possible that C could be as uniquely defined by some
other sub-set of properties Pp ---- Pl’ and then all the other properties
are descriptive. There may in fact be many different sub-sets of properties
that would define C, so that any one property Pj may in some cases serve
in the definition of C, and in others be an empirical statement of fact
about it. It is important to note that if one regards all the properties
P, === P, as part of the definition of C:ig; longer has any statement about
the real world, since it is a matter of fact, not logical necessity, that
possession of the properties Py --- P, entails the possession of Py+y --- Pj.
On the other hand, the entity C has to be defined, and a sufficient number
of properties must be set aside to this end.

I should remark at this point that in defining entities by their
properties I do not mean to conflict with those, such as P. W. Bridgmanz, who
hold that the concepts of science are operationally defined. "If the con-
cept is physical, as of length, the operations are actual physical operations,
namely those by which length is measured."S Clearly, to determine a property
is to carry out a specified set of operations and to observe some consequent
result, usually a number denoting, for instance, the position of a pointer
on a scale. This number, then, when stated in conjunction with the opera-
tions needed to arrive at it, specifieg the property, so that the above
definitions in terms of properties may equally well be regarded as definitions
in terms of the operations by which the properties are measured, I do not

have in mind unobservable properties, such as those of Newtonian absolute

2. Feigl & Brodbeck (Ed.), "Readings in the Philosophy of Science."
Appleton-Century-Crofts (1353), pp. 34-46.

3. P. W, Bridgman, "The Logic of Modern Physics," Feigl & Brodbeck, op._ cit.
p. 36,



time, against which Bridgman rightly directs his attack.

Given then the properties Pl -—- Pn’ it remains to decide which of the
possible sub-sets should best be taken to define C. Since science, through
the application of one blade of Ogcam's razor , deems it desirable to use
as few definitions as possible, those properties will be chosen which can
discriminate most sharply and certainly, and which can be most widely
applied. For example,4 the statement "Copper has a certain, high elec~
trical conductivity," was originally a factual assertion about an entity
defined in terms of other properties. Now, however, that electrical con-
ductivity can be measured so precisely for such a wide variety of materials,
this statement has become part of the definition of copper, displacing
other, vaguer, less discriminatory properties such as colour. This change
of status has very practical consequences: given a discrepancy in a con-
ductivity measurement of something thought to be copper, previously one
would have concluded that the conductivity of copper was not what it had
been thought to be, while now one would conclude that the substance was not
in fact copper, but some other material, Thus, once a property is chosen
as part of the definition of an entity, it becomes in one sense conventional,
in that it can no longer be reﬁuted by experiment. But still, such a
definition is not deveid of factual content, since the choice of it carries
the implication that the order, regularity, constancy in nature embodied in
the entity can be more surely characterised by this than by some other
definitione. If the factual properties of the entity and its relations
with other entities could be more simply and generally expressed by using

a different definition, this would be done. One instance is the choice of

4. Taken from Ernest Nagel, "The Structure of Science,” Harcourt, Brace &
World, Inc. (1961) p. 54.
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the constant-volume ideal-gas thermometer to define the scale of temperature,
in preference to such other devices as mercury-in-glass thermometers,
thermocouples, and pyrometers, The ideal~gas scale is chosen because it is
in fact independent of the particular gas used, and because it can be shown
to be identical with the theoretical thermodynamic scale of temperature.

Thus the conclusions of thermodynamics can be applied to real systems if
temperatures are measured on the ideal-gas scale. It is true, of course,

as Bridgman points out,s that auxiliary definitions have to be provided to
extend the concept beyond the range to which the original definition applies.
From his operational viewpoint, this really means defining a new entity;
from the viewpoint presented here, the procedure is merely that of changing
to a more convenient sub-set of defining properties, taking care that there
is no practical ambiguity in the region of overlap.

These considerations are clear enough in such cases as those of tem-
perature or the chemical elements, where the properties inveolved relate to
more or less directly observable quantities. The basic statements of
classical mechanics, however, concern the more highly abstracted entities
of length, time, mass and force and are in consequence much harder to label
with certainty as conventions on the one hand or empirical statements on
the other, "The (Newtonian) axioms of Motion are theoretical statements....;
(i.e.) they are not statements about relations between experimentally
specified properties, but are postulates implieitly defining a number of
fundamental notions that are otherwise left unspecified by the postulates

6
of the theory." It is therefore very tempting to assert that "most, if not

all of the general 'principles' of physics are conventions."’ By applying

5. P. W, Bridgman, op. cit., p. 37 et seq.
6. Ernest Nagel, op. cit., p. 160,
7. 1bid., p. 260.
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the arguments developed above to the basic entities of classical mechanics,

4
we may consider to what extent this view, most notably advanced by Poincares,

is wvalid.

Classical mechanies rests upon the Newtonian axioms of motion, which
he stated as follows:

Law I: Every body perseveres in its state of rest, or of uniform

motion in a right line, unless it is compelled to change that

state by forces impressed thereon.

Law II: The alteration of motion is ever proportional to the

motive force impressed, and is made in the direction of the

right line in which that force is impressed.

Law III: To every action there is always apposed an equal re-

action; or, the mutual actions of two bodies upon each other are

always equal and directed to contrary parts.

The axioms in turn are based on certain assumptions about the nature
of space and time, and these must first be made clear before the axioms them-
selves can properlY be discussed.

One may note at this point that there have been several reformulations
of the theory of classical mechanics, notably those of Hamilton and Lagrange.
Some of these take other and newer concepts, such as energy, to be more
fundamental than the Newtonian notion of force, All such formulations,
however, are mathematically equivalent, and it seems therefore proper to
conduct the inquiry on the basis of Newton's version as being both the
original and most familiar,

In talking of motion and of the measurements of length and position

involved, Newton took it for granted "that Euclidean geometry (was) the only

theory of spatial relations that (could) provide a theory of mensuration.

8. Henri Poincare, "Science and Hypothesis," Dover (1952), Parts II and III.
9. Sir Isaac Newton, "Mathematical Principles of Natural Philosophy," Florian
Cajori (Ed.). Berkeley, California (1947) cited, Nagel, op. cit., p. 158.



Since Newton's day, however, a large number of alternative pure geometries
have been constructed."10 In the face of these alternatives the issue of
conventionalism is immediately raised: are the postulates of geometry, as
applied to physical measurement, pure definitions, or have they a definite
empirical content? The third alternative, affirmed by Kant, that they are
synthetic a priori intuitions is well disposed of by Poincare. In that
case, he says, "they would be imposed upon us with such a force that we
could not conceive of the contrary proposition, ner could we build upon
it a theoretical edifice. There would be no non-Euclidean geometry."ll
But there is non-Euclidean geometry, and there can in any case be few left
today who seriocusly hold that the contents and structure of the universe
must of necessity be limited to what they themselves can conceive. But
Poincaré's advocacy of conventionalism in this context suffers from a con-
fusion between "pure" and "applied" geometry. With the former, certainly,
"the axioms of geometry are only definitions in disguise. What, then, are
we to think of the guestion: Is Euclidean geometry true? It has no
meaning."lz But then one must ask: are the postulates of pure geometry
satisfied by "real"straight lines, for example, defined by the paths of
light rays? If not, and this turns out to be the case over astronomical
distances, there are two alternatives:

(1) The Euclidean definitions may be retained, when it becomes a
matter of fact that light rays and celestial bodies do not travel in
straight lines. Then, from Newton's first axiom, it is necessary to postu~

late some "universal force,"13 of which Newtonian gravitation is an example,

10. Ernest Nagel, op. cit., p. 234.
11. Henri Poincare, op. cit., p. 48.
12, Ibid., p. 50. -

13. Ernest Nagel, op. cit., p. 2684,



to explain the deviation.

(2) A practical definition of a "straight line" as the path of a
1ight ray may be adopted, when it becomes a matter of fact whether or not
the axioms of a given geometry describe the properties of these lines. In
this case, it makes perfectly good sense to ask if Euclidean geometry is
true. "The guestion whether the practical geometry of the Universe is
Euclidean or not has a clear meaning, and its answer can only be furnished
by experience."14

Since Newton knew only Euclidean geometry, he did not have the al-
ternative. But now, and in Poincare's time, the alternative exists and
has been variously expressed: - "One and the same physical world can be
described in terms of different geometries, if only the formulation of the
physical laws is each time adapted to the special geometry used "L
"Geometry (G) predicates nothing about the relations of real things, but
only geometry together with the purport (P) of physical laws can do so.
Using symbols, we may say that the sum of (G) + (P) is subject to the con~
trol of experience. Thus (G) may be chosen arbitrarily, and also parts of
(P)."14 Poincaré indeed recognised the existence of the alternative: "Our
choice among all possible (geometrical) conventions is guided by experi-

mental facts"lz

but was himself in no doubt as to which to take: "Euclidean
geometry is, and will remain, the most convenient .... because it is the

12
simplest.” But from a scientific point of view, the desirable simplicity

is that of the whole structure, that is, to use Einstein's symbolism, of

(@) + (P) together, not of (G) alonme. And it is now generally agreed that

14. Albert Einstein, "Geometry and Experience," Feigl & Brodbeck, op. cit.,
p. 191,

15, Moritz Schlick, "Are Natural Laws Conventions," Feigl & Brodbeck, op. cit.,
p. 186. -



the simplicity of Buclidean geometry is more than offset by the added com-
plexity which its use introduce$ into the formulation of physical laws.
Moreover, given the choice, it is more consonant with scientific tradition
to choose defined entities that have physical reality. One may note here
the analogy with the example of temperature measurement given earlier,
where thermodynamics may be applied to real systems because the practical
ideal-gas scale of temperature is identical with the theoretical thermo-
dynamic scale. In that case there is a variety of ways of defining the
practical entit;I;L that one is chosen which fits the simplest theory.

In astronomy, the path of a light ray is the only practical measure of a
straight line and so one must adjust the geometrical definitions to match
reality if the theorems of geometry are to be applicable to physical
measurement. 1 conclude, therefore, that in the case of his "unshakable
commitment"l8 to Euclidean geometry, Poincare's conventionalism, while
logically tenable, is scientifically perverse.

Given some geometrical system, which for classical mechanics will
certainly be Euclidean, questions of the space and time to which Newton's
axioms apply still arise, Newton considered motion as taking place in
absolute space, which he carefully distinguished from relative space, the
latter being merely "some movable dimension or measure of the absclute
spaces; which our senses determine by its position to bodies; ... But
because the parts of space cannot be ... distinguished from one another by
our senses, ... instead of absolute places and motions, we use relative
ones: ... but in philosophical disquisitions, we ought to abstract from

our senses, and consider things themselves, distinct from what are only

16, Ernest Nagel, op. cit., p. 266.



sensible measures of them. For it may be that there is no body really at
rest, to which the places and motions of others may be referred."l7 Un-
fortunately, it has been shown toc be impossible by any mechanical experiment
to ascertain whether a body really is at rest with respect to absolute
space. Newton himself recognised this in the case of coordinate systenms
having uniform veloecity relative to absolute space, for in such a case the
differential equations of motion are invariant. He did, however, think it
possible, by such experiments as that of the rotating bucket, to demonstrate
absolute rotation. In this experiment, a bucket part-filled with water is
rotated until the water comes to rest relative to the bucket. The surface
is then no longer plane, but paraboloidal., This deformation, Newton
asserted, since it is not the result of the water's motion relative to the
bucket, can only be the result of its motion, or more specifically, its
rotation, in absolute space. However, as Ernst Mach has pointed out,l7 such
an experiment merely demonstrates rotation relative to some system of bodies
other than the bucket. "Try to fix Newton's bucket and rotate the heaven

of fixed stars and then prove the absence of centrifugal forces."l8 Mach
argued that "inertial properties are contingent upon the actual distribu-
tion of bodies in the Universe."lg Absolute space, abstracted from the
spatial relations between bodies, is quite unobservable and so scientifically
useless, if not meaningless. "It is sufficient to take a coordinate systenm
defined by the fixed stars as the frame of reference for the rotation."l9

Then the equations of motion remain the same for any frame of reference

17. Cited Ernest Nagel, op. cit., p. 207,

18, Ernst Mach, "Newton's Views ofTime, Space and Motion," Feigl & Brodbeck,
op. cit., p. 168 et seq.

18. Ernst Mach, cited by Ernest Nagel, 9p. e£it., pp. 209-210,
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moving with uniform velocity relative to the fixed stars, and, short of
relativity, this is as far as one can go. Such frames of reference are
called "inertial" or "Galilean". Again, all this can be regarded as pure
convention. It is quite possible, indeed very common, to use a non-inertial
coordinate system for convenience in analysing motions in, for instance,
fluid mechanics. When this is done, the resulting changes in the equations
of motion are explained in terms of "forces" invented precisely for that
purpose (centrifugal and Coriolis forces). The earth's surface itself is
a non-inertial frame, though in most measurements the effects of the
earth's rotation are not significant. But it is still true that the basic
reference frame of classical mechanics is taken from the class of
"inertial" frames. Why? The reason is that if a non-inertial frame were
selected, then in any other frame the equations of motion would be modified
and "the specific force-functions that would have to be supplied in order
to analyse motions in terms of the Newtonian axioms would be different in
nearly every special problem, and would have to be invented ad hoc for each
case"?Y and since it is the object of science to find the most general
relations, such a choice would be highly undesirable, if indeed it did not
render the practical application of Newton's axioms impossible, Thus,
again, the choice of a reference frame, while formally conventional, is
practically determined by the physical structure of the world.

Now, armed with Euclidean geometry and an inertial reference frame,
one may attack the axioms themselves., The first axiom asserts that a body
under the action of no force can only move uniformly in a straight line

(with rest as a special case). This axiom, like Euclidean geometry, has

20, Ernest Nagel, op. cit., p. 21l.
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been held to be an a priori truth, and, as in that case, the refutation is
well put by Poincare: "If this is so, how is it that the Greeks ignored it?
How could they have believed that motion ceases with the cause of motion? or,
again, that every body, if there is nothing to prevent it, will move in a
circle, the noblest of all forms of mntion."21 The choice then lies, as
before, between experimental law and definition. To the former, Poincar;
at once objects, "Have there ever been experiments on bodies acted on by
no forces? and, if so, how did we know that ne forces were acting?"21 Be-
cause the body moved uniformly in a straight line? But then the law cer-
tainly is a definition, either of the absence~of-force, or of uniform
motion. Since one has Euclidean geometry and an inertial reference franme,
the latter reduces to a definition of equal time-intervals., But even to
give this meaning to the axiom, an independent definition either of absence-
of-force or of equal time-intervals is needed. If both can be independently
defined, then the axiom may indeed be regarded as an empirical law. It may
be relevant to note here that notions of force and time were used, and
measurements made of them, long before the first axiom was formulated.

Consider first time measurement. Equal time intervals may be demon-
strated by any periodic device, such as a water-clock or pendulum. It is
then observed, using such a time-scale, that many other processes exhibit
regularity. If now some other of these processes are used as clocks, a
wider range and more precise nature of regularity may be observed, and so,
in accordance with the general principles outlined earlier, these will be
preferred as time-defining processes. This procedure of "successive

22
definition™ is continued until some practical limit of precision is

21, Henri Poincaré, op. cit., pp. 91-92.
22, Ernest Nagel, op. cit., p. 181,
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reached. Until recently, the rotating earth was the standard clock; this
has now been replaced by the periodic oscillation of certain specified
crystals. Again the close analogy will be noted with the development of
the ideal-gas temperature scale.

As for the definition of absence-of-force, this is hardly possible
until force itself has been defined, and here one must turn to the second
and third axioms.

The second axiom can be cast into modern form to read: "The rate of
change of momentum of a body is proportional to, and along the line of
action of, the applied force" or F = Q&%!l. Several points need to be made
about this axiom, In the first place, while force is plainly a directed
gquantity, it by no means follows that it can be represented by a vector,
Indeed, from the fact that a line of action is specified, it is clear that
six coordinates are required to determine a force -- three for the com-
ponents of the force, and three to fix its point of application. Secondly,
it further follows from the specifying of a line of action that the axioms
of motion apply only to "point" bodies, since for such distributed forces
as pressure, there is no unique line of action. The notion of "point"
bodies or masses indicates a limiting procedure. If real bodies may be
considered as made up of large numbers of point masses interacting in certain
ways, then with the addition of the third axiom, the theory may be extended
to cover the mechanics of real solids and fluids, (This concept of point
masses must not, incidentally, be taken to imply a molecular model. In
fluid mechanics, for instance, it is explicitly assumed that the fluid ele-
ments ,to which Newton's axioms are applied in deriving the equations of
fluid motion,contain enough molecules to approximate to elements in a

continuum having the mean macroscopic properties of the fluid. When this
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assumption breaks down, as in low-pressure gaseous (Knudsen) diffusion, the
equations of fluid mechanics do not apply, and kinetic theory, where the
point masses are molecules, must be resorted to.) This extension in applica-
tion of the axioms naturally requires further assumptions about the nature
of the interactions between point masses., At one extreme the assumption
that the masses can move freely and react only on collision leads to the
kinetic theory of gases; at the other, the assumption that their relative
spatial positions are precisely fixed leads to the mechanics of rigid
bodies. In between, various relations between forces and relative posi-
tions, such as Hooke's law of elasticity, Newton's laws of viscosity and
gravity, laws of surface tension, electrostatics, magnetism, electro-
magnetism, enable models to be constructed which approximate the behaviour
of real solids and fluids. In short, it is quite clear that force is not
meant to be directly observed or measured at all. It is a convenient entity,
to be eliminated in any particular case between the Newtonian axioms and the
relevant experimental law, Then as further research indicates discrepancies
in any field, it is the experimental law which is modified, rather than the
axioms, because modifying the axioms would necessitate changing every other
experimental law based on them. Nevertheless, as with Euclidean geometry,
the axioms have survived only so far as the laws to which they give rise
are in fact manageably simple., Again using Einstein's symbols, it is (@) +
(P) which is subject to the control of experience and in which one requires
the greatest simplicity and scope, where now (G) represents the Newtonian
axioms, and (P) the purport of the physical laws derived in terms of the
entities of mass and force defined by the axioms. The analogy is close

enough for one to conclude, as in the case of geometry, that even regarded
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as definitions, the axioms are by no means arbitrary and devoid of empirical
content,

Before the second axiom can be used to define force, one must resort to
the third axiom to define mass, and the process may be outlined in the
following way:

Let two bodies A, B, mutually interact (directly or by means of mechan-
jcal, electrical, hydraulic or other devices). Then, frem§ the third axiom
Fyp = -~ Fgp - -~ ()
where Fpp denotes the force exerted on A by B, Fgp the force exerted en B by
A, and the minus sign indicates the opposite direction. Then, by substituting

from the second axiom, equation (1) becomes

a(MyV,) - _ a(MgVp)
it % ---(2)

It is now assumed that the mass M of a body is a constant property of

it, in particular, that it is independent of the velocity V. (2) may now be

dV A = e dV
rewritten M, & M, =B _ ..
A F% B 4t (3)

and by writing the acceleration %% = a, (3) becomes

MA:_aB
S IEEC)

Then, under these circumstances, it is an empirical fact, that under all
variations of temperature, pressure and other conditions, and for velocities
much less than that of light, the accelerations a,, ag are epposite in die-
@ction and constant in ratio irrespective of the velocities of the bodies.
Thus the original assumption of the constant mass of A and B is validated by
experimental results., The scalar nature of mass is also shown by these
results, since it is the ratic of two directed quantities with the same

direction and line of action. The next step is to select a unit of mass,
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say Mg, when we have a.
" R )

and thus the mass of any body A may in principle be determined.(ih1practice,
of course, use is made of applications of the axioms to rigid-body mechanics,
and Newton's law of gravitation, to determine masses indirectly by comparing
weights, but this is only a matter of convenience.)

Similar experiments with a third body C made with A and B first
separately, and then together, establish that mass is an additive, or ex-
tensive property. Experiments with the three masses not co-linear establish
the parallelogram addition of induced accelerations and hence, by substitu-
tion in the second axiom, that force may indeed be represented vectorially.
All these are empirical facts, and to the extent that the second and third
axioms are regarded as embodying the notions of mass as a constant scalar
extensive property of a body, and of force as a vector quantity, they are
far from being pure definitions and imply a great deal of factual information.

One may now return to the first axiom in the light of the foregoing
development, It may be rewritten to state that, in the absence of inter-
actions with other bodies, a body will not change its velocity in magnitude
or direction. This implies that, in the general case, not the velocity,
but the acceleration of a body is governed by the effects of other bodies,
Thus the differential equations of motion of the body will be at least
second-order, and the associated boundary 6r initial conditions may there-
fore involve both the position and velocity of the bodies concerned. In
Poincare's words, "The acceleration of a body depends only on its position

na3

and on that of neighbouring bodies, and on their velocities. He goes on

23, Henri Poincare, op. cit., p. 92.
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to ask: "Has this generalised law of inertia been verified by experiment,
and can it be so verified? ... Newton ... certainly regarded this truth as
experimentally acquired and demonstrated. .... It was so proved by the laws
of Kepler. According to those laws, in fact, the path of a planet is
entirely determined by its initial position and initial velocity; this,

indeed, is what our generalised law of inertia requires."z4

Dismissing as
incredible the hypothesis that we have merely observed a special case of

a higher order system, he says "we may admit that so far as astronomy is
concerned our law has been verified by experiment."zs But he goes on to
assert that no future experiment will ever invalidate it., We could never
apply the decisive test, he says, of having all the bodies in the universe
return "with their initial velocities to their initial positions after a
certain time. We ought then to find that they would resume their original
paths, But this test is impossible;"25 and in other fields than astronomy,
specifically physics,"if physical phenomena are due to motion, it (sic) is

to the motion of molecules which we cannot see."25

If necessary, then,
discrepancies can be explained away in terms of "the position or velocity

of other molecules of which we have not so far suspected the existence.

The law will be safeguarded."25 This further reasoning seems to me entirely
unconvincing, If we did live in a third or higher-order world, the equations
of motion, investigated in different ways, would presumably require
different auxiliaries to reduce them to second-order. Molecules have been
examined through a wide variety of properties -- mechanical, thermal,

electrical, magnetic, chemical -- and in most cases their interactions

have been described with perfect consistency by second-order equations of

24, Henri Poincaré, op. cit., p. 94,
25, Ibid., pp. 95-96.
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notion.

Put another way, in all these fields Neﬁtonian forces (i.e. as defined
from the second and third axioms) are observed to be functions solely of
the positions and velocities of the bodies concerned and not of any higher
derivatives. If this is not to be admitted as confirming evidence, why
should astronomical data be? If one can have auxiliary molecules, why
not auxiliary (but invisible) celestial bodies? This, of course, was pre=-
cisely what was done last century to explain irregularities in the
planetary motions. In the case of the orbit of Uranus, the postulated
planet was observed, in that of Mercury it was not, and it is just this
empirical observation, among others, which is held to justify the replace-
ment of classical by relativistic mechanics, Similarly, observed dis-
crepancies in the molecular and sub-molecular fields have led to the
development of quantum and wave mechanics. In short, the first axiom, as
a "generalised law of inertia", is perfectly open to refutation in the
physical sciences and is no more an empty convention than is, say, the Law
of Conservation of Energy.

To sum up the discussion of the Newtonian axioms of motion, I suggest
that they may most reasonably be regarded as a mixture of definition and
statements of empirical fact. They presuppose Euclidean geometry, inertial
space and an accepted standard of time. I have tried to show that these
presuppositions are not purely arbitrary but contain implicit assumptions
about the structure of the physical world and so may have toc be abandoned
as experiment shows these assumptions to be invalid. Then the third axiom
may be regarded as defining mass, it being an empirical fact that mass is a

positive, scalar, extensive, constant property of a body for velocities



18

small compared with that of light. The second axiom defines force, it being
an empirical fact that the defining accelerations, and hence the forces,
may be characterised by vectors. Finally, the first axiom may be generalised
into a principle of inertia which has been supported by a wide range of
experimental evidence. There is, of course, a variety of ways of assigning
the definitional functions and factual implications of classical mechanics
among the three axioms. "There is no one official formulation of the
theory, and in different contents different modes of articulating it may be
assumed .... Such shifts in modes of approach are not necessarily signs of
confusion. They may illustrate only the flexibility with which definitions
and empirical statements can sometimes be interchanged within a highly
systematised body of knowledge."zS

The flaws of Poincare's conventionalism seem to lie in two suppositions:
(1) That if a statement can be construed as a definition, it must be devoid
of empirical content. In the natural sciences, however, definitions, to
use Mill's phrase, conceal axioms, and carry definite factual implications.
(2) That if each of a set of statements relating to an entity or entities
can be separately regarded as a definition, the whole set together can be so
regarded. That this is fallacious, I have tried to show in the early part
of the paper.

"Thus is explained," concludes Poincare, "how experiment may serve as a
basis for the principles of (classical) mechanics, and yet will never in-
validate them."27 Whether he would have maintained this position in the face

of later developments in quantum mechanics on the one hand, and relativity

26. Ernest Nagel, op. cit., p. 182,
27, Henri Poincaré, op. cit., p. 105.
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on the other,is an interesting but perhaps unprofitable question,
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